求矩阵特征值和特征向量的方法有哪些?求特征值和特征向量的步骤是什么?

求矩阵A的特征值和特征向量有哪些方法? (在线等!)求特征值和特征向量的步骤是?

本文目录:

1、设x是矩阵A的特征向量,先计算Ax;

2、发现得出的向量是x的某个倍数;

3、计算出倍数,这个倍数就是要求的特征值。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

扩展资料:

特征向量的性质:

特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

(在线等!)求特征值和特征向量的步骤是?

A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。

式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。

令|A-λE|=0,求出λ值。

A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。

然后写出A-λE,然后求得基础解系。

拓展资料:

特征值和特征向量的意义:

1、矩阵基础

矩阵是一个表示二维空间的数组,矩阵可以看做是一个变换。在线性代数中,矩阵可以把一个向量变换到另一个位置,或者说从一个坐标系变换到另一个坐标系。

矩阵的“基”,实际就是变换时所用的坐标系。而所谓的相似矩阵,就是同样的变换,只不过使用了不同的坐标系。线性代数中的相似矩阵实际上就是要使这些相似的矩阵有一个好看的外表,而不改变其变换的功用。

2、矩阵的特征方程式

AX = Xλ

方程左边就是把向量x变到另一个位置;右边是把向量x作了一个拉伸;

任意给定一个矩阵A,并不是对所有的向量x它都能拉长(缩短)。凡是能被矩阵A拉长(缩短)的向量就称为矩阵A的特征向量(Eigenvector);拉长(缩短)的量就是这个特征向量对应的特征值(Eigenvalue)

对于实对称矩阵来说,不同特征值对应的特征向量必定正交;我们也可以说,一个变换矩阵的所有特征向量组成了这个变换矩阵的一组基;

3、在层次分析法中(AHP) 最大特征根法确定权重

特征根在一定程度上反映了 成对比较矩阵(正互反阵)的总体特征。

所有的特征向量的集合构成了矩阵的基,特征向量是基,特征值反应矩阵在各个方向上的值,特征值的模则代表矩阵在每个基上的投影长度。

不同的特征向量就是矩阵不同的特点,特征值就是这些特点的强弱。

求矩阵的123-213-336的特征值和特征向量?

特征值-1的全部特征向量为: c3(1,-1,0)', c3为非零常数.

解题过程如下:

解: |A-λE| =

1-λ 2 3

2 1-λ 3

3 3 6-λ

r1-r2

-1-λ 1+λ 0

2 1-λ 3

3 3 6-λ

c2+c1

-1-λ 0 0

2 3-λ 3

3 6 6-λ

= (-1-λ)[(3-λ)(6-λ)-18]

= (-1-λ)[λ^2-9λ]

= λ(9-λ)(1+λ)

所以A的特征值为 0, 9, -1

AX = 0 的基础解系为: a1 = (1,1,-1)'

所以,A的属于特征值0的全部特征向量为: c1(1,1,-1)', c1为非零常数.

(A-9E)X = 0 的基础解系为: a2 = (1,1,2)'

所以,A的属于特征值9的全部特征向量为: c2(1,1,2)', c2为非零常数.

(A+E)X = 0 的基础解系为: a3 = (1,-1,0)'

所以,A的属于特征值-1的全部特征向量为: c3(1,-1,0)', c3为非零常数.

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量。

知道了特征向量怎么求对应的特征值

Aα 一定等于 α 的某个倍数λ ,此倍数就是对应的特征值。如果矩阵可对角化并且知道所有的特征值及对应的特征向量,那么可以用这些信息来还原矩阵因为Ap1=p1λ1, Apn=pnλn A[p1,,pn]=[p1,,pn]diag{λ1,,λn}A=[p1,,pn]diag{λ1,,λn}[p1,,pn]^{-1}求出特征值之后,把特征值代回到原来的方成里,这样每一行的每一个数字都是已知的,就成了一个已知的矩阵。例如求的不同的特值有两个,2和3.将2带回你的方程,假设这个矩阵是A,以这个矩阵作为已知条件,来求方程。也就是Ax=0的形式,把这个方程解出来。求得的所有无关的解向量,就是关于特征值2的特征向量。同理,再将3带回你的方程,得到的矩阵是B,求Bx=o的所有无关解向量。就是属于特征值3的特征向量。扩展资料:从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。上述的特征值方程可以表示为:但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程更好。若是一个微分算子,其特征向量通常称为该微分算子的特征函数。例如,微分本身是一个线性变换因为(若M和N是可微函数,而a和b是常数)

大家都在看
本文经用户投稿或网站收集转载,如有侵权请联系本站。